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Abstract

In the paper some features of the theory of Not Resisting Tension (NRT) material are deepened. In details, one first
introduces the basic NRT model, which is proved to simply and effectively interpreting the behaviour of mechanical
bodies made by not-cohesive materials; thereafter one analyses energetic approaches and limit analysis tools for prob-
lems relevant to NRT continua. Afterward, on the basis of the fundamental variational theorems, the main rules gov-
erning the NRT behaviour are demonstrated, by imposing Kuhn-Tucker stationarity conditions for the stated
constrained optimisation procedures. Finally an application is operated of the presented theory to an elastic NRT
semi-plane subject to a distributed load, reproducing the stress situation induced in the soil by a foundation structure.
© 2005 Elsevier Ltd. All rights reserved.
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1. The NRT material
1.1. General features of NRT behaviour

The Not Resisting Tension (NRT) material (Baratta, 1991; Di Pasquale, 1984; Bazant, 1996a) is a simple
and complete phenomenological model for interpreting the mechanical bodies made by not-cohesive
materials.

The theory of the Not Resisting Tension material, originally formulated by Heyman (Heyman, 1966;
Heyman, 1969), is based on two fundamental hypotheses: the assumption of zero tensile resistance and
the hypothesis of linear elastic behaviour in compression.
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Even as an idealization, the NRT model gives a pretty reliable representation of the real behaviour of
materials exhibiting light tensile resistance, such as masonries or soils (Baratta, 1984, 1996; Cambou and
Di Prisco, 2002; Broberg, 2000; Li and Bazant, 1996; Bazant, 1995; Acker et al., 1998).

The NRT material is usually conceived by assuming an elastic response, possibly non linear, along
planes characterized by pure compression stresses, while one admits the development of free deformations
(fracture strains) without energy dissipation along the other directions. That is to say that the NRT material
is essentially a non-linear elastic material, whose non-linearity is mainly due to the development of frac-
tures, which are absent in the compressive phase.

The NRT constitutive law is, then, usually schematised by an elastic stress—strain relation, which is uni-
lateral, that is to say valid with reference to purely compressive fields.

Therefore, the domain of admissible stresses coincides with the Rankine’s square, with infinite limit
tension in compression.

By assuming negative values for compressive stresses, at the generic point P (Fig. 1) the stress tensor &
should be characterized by stress values along the principal directions ‘1’ and ‘2’ satisfying admissibility con-
ditions; that is to say that, imposing g, < g7, admissible principal stress states should satisfy the condition
g1 < 0.

The admissibility condition can be equivalently expressed with reference to the generic plane elements 7,
normal to the lines ‘@’ passing trough the point P, by considering the normal ¢, and tangential 7, compo-
nents of the stress vectors t,; in this case it imposes that ¢, < 0 with 7, undefined on =,,.

Since the material is not able to resist tensile stresses, it is necessary to allow for the development of
inelastic strain g (fracture strain tensor) superposing to the elastic strain &..

The fracture strain has the role of transferring those forces deriving from inadmissible tensile stresses to
the neighbouring material, in cases where the body has the capacity of achieving equilibrium with the same
forces in pure compression.

At any point where the fracture tensor is not zero, contact at the inner of the material is lost on a variety
of plane elements. These phenomena are accounted for by assuming that:

e the fracture strain is positive semi-definite (fracture corresponds to a strain state which does not produce
contraction of any material element);

o the stress state is negative semi-definite (the stress state cannot suffer tractions);

e on any principal direction where the material is compressed, the relevant coefficient of linear elongation
of the fracture strain is zero;
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Fig. 1. The stress (X) and the fracture (®) admissible domains in the spaces of tensor components (a) and of principal components (b).
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e when the fracture starts, the displacements relevant to the fracture strain tensor are parallel to the prin-
cipal direction of the stress tensor corresponding to ¢; = 0, that is to say to the compression isostatic
lines (in such a manner that no tangential stress rises).

1.2. Standard NRT model

The simplest NRT model assumes linear elasticity under pure compression and development of inelastic
strains obeying the Drucker’s postulate (Baratta, 1991). Such a model is referred to as Standard Not Resist-
ing Tension material.

The Drucker’s postulate hypothesis implies the normality rule for the inelastic strain, which is a partic-
ularization of the normality law of the plastic flow vector on the plastic surface (Fig. 2); the Drucker’s
postulate assumption, thus, implies an analogy of the NRT model with elastic—perfectly-plastic associated
flow law.

The material should, hence, satisfy the following relations:

{Sfa >0

6. <0 Vaer,, (6,<0)=(6=0); e=¢+&=Co+g (1)

where C is the elastic tensor, r, denotes the set of lines passing through the generic point P, a denotes one of
these lines.
The Drucker’s postulate hypothesis implies the conditions

(6'—6)-&<0 Vo' eZX
{0'18“ :0;028f220}2>0"8f:0

2)

where ¢’ is any admissible stress state other than the effective one 6.

2. Variational approaches to NRT continua
2.1. Energetic approaches to NRT problems

Analysis of NRT continua proves that the stress, strain and displacement fields obey extremum princi-
ples of the basic energy functionals (Del Piero, 1989; Baratta and Voiello, 1996; Bazant and Li, 1995).

Fig. 2. Admissible stress domain.
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The solution of the NRT structural problems can, thus, be referred to the two main variational
approaches:

e the minimum principle of the Total Potential Energy functional,
e the minimum principle of the Total Complementary Energy functional.

In the first case the displacements are assumed as independent variables.

Therefore the solution displacement u, and fracture strain &g fields are found as the constrained mini-
mum point of the Total Potential Energy functional, under the constraint that the fracture field is positively
semi-definite at any point.

The approach based on the minimization of the Total Complementary Energy functional assumes the
stress state as independent variable. The complementary approach is widely adopted since the existence
and uniqueness of the NRT solution are always ensured in terms of stress, if some conditions on the com-
patibility of the loads are satisfied.

The stress field o can, then, be found as the constrained minimum of the Complementary Energy func-
tional, under the condition that the stress field is in equilibrium with the applied loads and is compressive
everywhere.

The solution of both problems can be numerically pursued by means of Operational Research methods
(see i.e. Rao, 1978; Zyczkowski, 2002; Cherkaev, 2002; Pedreglal, 2001) suitably operating a discretization
of the analysed NRT continuum.

The theorems of Limit Analysis (Baratta, 1991; Como and Grimaldi, 1983; Franciosi, 1980; Khludnev
and Kovtunenko, 2000; Bazant, 1989, 1996a,b, 1997) can be specialized to NRT continua after defining the
classes of kinematically sufficient mechanisms and statically admissible stress fields.

2.2. Limit analysis for NRT continua

Denoting by U the set of possible displacement fields, the class of admissible mechanisms is defined by the
subset U; of U containing displacement fields u; that are directly compatible with fracture strains g apart
from any elastic strain field (‘““Mechanisms of collapse”), i.e., after introducing the gradient operator V

& =Vu >0 (3)
U ={u € U: Vur = 0} (4)
Kinematically sufficient mechanisms can be defined as fracture admissible mechanisms ug such that the en-

ergy dissipated by the loads (p, F) applied on the free surface 4, and the volume Q is positive; this condition
is analytically expressed by the inequality

/Ap'llfdA—F/QF'llde>0 (5)

Since a necessary condition for the existence of the solution is that
/prdA+/Fude<0 Yur € Uy (6)
4, Q

and remembering that the material under examination is unable to dissipate energy (see the second Eq. (2)),
one can, thus, enunciate the “Kinematical Theorem” of Limit Analysis for NRT bodies: “if any kinemati-
cally sufficient mechanism exists under the applied loads, no solution can exist for the equilibrium of the
NRT solid”.

On the other side, statically admissible stress fields ¢ can be defined as stress tensors equilibrating the
applied loads and satisfying admissibility conditions, i.e. ¢ € X, where X is the admissible domain.
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Assuming that under the load pattern (p, F) a statically admissible stress field o exists (i.e. ¢ < 0), for any
mechanism uy, by the Principle of Virtual Work one gets

/p~llfdA+/F-llde:/0'-8de<0 Yur € Uy (7)
A, Q Q

One can, thus, enunciate the “Static Theorem”™ of Limit Analysis for NRT bodies: “if under the applied
loads any statically admissible stress field ¢ exists, no kinematically sufficient mechanism exists and the
structure cannot collapse”.

From the above considerations it follows that the study of the existence and uniqueness of the solution
only requires a suitable kind of limit analysis for the structure. Uniqueness of the solution holds for the
stress field but not for displacements and strains.

3. Kuhn-Tucker stationarity conditions for minimum energy approaches applied to NRT continua
3.1. Minimum total potential energy approach

Let

1
E(u,a) =5 [ [Vu(x) ~ (9] C[Vu(0) ~ s(x)] ¥ = [ p(x)-u(x)dd 9
Q Ap
be the Total Potential Energy functional defined on the displacement field u = u(x) and the fracture field
& = &(x), where x denotes the position vector of the current point in the solid, and C is the tensor of elastic
constants of the material.

It is proved that the functional Eq. (8) is minimum in solution, i.e. when the couple of fields [ug(x), &n(x)]
is an equilibrium system, over all the fields that satisfy the admissibility conditions for fracture. One can,
then, write

J]f(X) = 0

E(ug, &) = I}’llifn E(u, &) sub {sz(x) > 0 Vx € Q 9)

Jir(x) and Jo¢(x) being the linear and quadratic invariants of the fractures field, given by

J1r(X) = épox(X) + &0y (X)
2 10
Jar(X) = &ox(X) g0y (X) — B nyxy(X):| (10

It is proved that the solution to the problem Eq. (9) necessarily yields a negative semi-definite stress field
oo(x) = C[Vuy(x) — &r(x)], coaxial and orthogonal to the fracture field.
Let in fact form the Lagrangian functional from the problem equation (9)

L(ll, &r, ),1, 12) = E(ll7 Sf) — /

)ul(X)Jlt‘(X)dV — / iz(X)sz(X)dV (11)
Q Q
with 7;(x) and A5(x) a couple of Lagrange multiplier functions.

By the Kuhn-Tucker optimality conditions, a couple of non negative functions 4;(x) and 4(x) exists
such that first-order variations, starting from the solution point [ug(x), &r(x)], of the Lagrangian functional
with respect to free variations of the variables u(x), e{x) are identically zero.

Moreover the complementarity condition holds: ;(x)Ji(x) = 2x(X)Jo(x) =0 Vx € Q.
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The stationarity condition of the Lagrangian functional with respect to variations dg; yields
5L, (o, &0, I, Ja) = — / oo(x) - e (x) dV / ()31 (x)dV — / 72(X)3Ja(x)dV = 0 Voer(x)
Q Q Q
(12)

In Eq. (12) the variations of the linear and quadratic invariants of the fractures field 8J; and d8J,¢ are
expressed by the relations

SJlf(X) = SSfX(X) + 68fy(X)
13
8J20(x) = r0x(X)Bery (X) + 10y (x)Bepe (X) — %Vfoxy(X)Sny(X) 1

Moreover the scalar product in the first integral in Eq. (12) can be developed as follows:

Q{[O'Ox(x) + Z1(X) + A2(X)éroy (x)]Oer, } AV + /Q{[O'Oy(x) + A1(X) + 22(X)erox] Oer, (x) } AV

{0 = a0, 00 37,00 far = 0 8,50, (14)

which implies
o0 (X) = =41 (X) — Aa2(X)ér0,(X)
ooy (X) = —A41(X) — Aa(X)&rox(X) (15)
Toy(X) = %iz(x)”)’f()xy(x)
One can, thus, easily calculate the stress invariants /;(x) and I»(x)
I(x) = 00:(X) + 00,(x) = —241(x) — L (x)J11(x) < O
L (%) = 00:(x)00,(x) = [t0 ()] = [ (X)) + 41 (x) 2 (x)T1(x) + [ (x) " ar(x) = 0

whence one can conclude that

(16)

(i) “The stress tensor in every element is negative semi-definite in solution”Consider now the fracture
work

Li(x) = 60(x) - &0(X) = 00.(X)er0.(X) + G0, (X) &0, (X) + Toxy (X)Vror, (X)
= —[A1(x) + A2 (X)er0p(X)]eror (X) — [41(x) 22(X) erox (X)]eroy (X) + %;‘Z(X)[ymxy(x)]z (17)

whence, after some algebra
Lf(X) = —)VI (X)Jlf(x) — Z;LQ(X)sz(X) =0 (18)

and one can conclude that
(i1) “The fracture work in every element is null in solution”.Let us now consider the orientation of the
stress tensor in solution.The eigenvectors a(x) and B4x) (for i = 1,2) of, respectively, the stress and
fracture-strain tensors obey the equations

{ () = o () )
Stress: Towy (X) o1 (X) + [00,(X) — a1 (X))ot (x
)
]
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[er0:(X) — €101 (X)) B1(X) 43 Vpou (X) By, (X) = 0
37100 (X)B1(X) + [er0, (X) — o1 ()] B1,(x) = 0
Fractures: (20)
[erox (X) — €r02(X)] Ba (X) + ﬂmxy(x) y(X) =0
3 V10 (%) B (X) + [er0,(X) — &r02(X)] B, (X) = 0

where 0(x) and g (x) with i = 1,2 are the eigenvalues of, respectively, the stress and fracture-strain ten-
sors.By means of Eq. (15) it can be easily checked that

{ ao1(x) = —[41(X) + Z2(X)e02(X)]
O'OQ(X) = —[}vl (X) + )Q(X)Sf()l (X)]
Substitution into the first equation of the first set of Eq. (19) for «;(x), yields, remembering Eq. (15)
1
A2 () [eroy (%) — eroa (%)]ot1x (%) = 5 22(X) 710,y (X) 1 () = 0 (22)
whence, by comparison with the second equation of the second set in Eq. (20) for f,(x)
1

(1)

3 7r0xy (%) B (%) = [er0y(X) = ero2 (%), (x) = 0 (23)
one gets
Par(X) = =y (X); - By (X) = ot12(x) (24)

Eq. (24) states that a;(x) is orthogonal to f,(x) and consequently parallel to f; (x).Therefore, one concludes
that:
(ii1) “The stress tensor in every element is coaxial to the fracture strain tensor in solution”.

The above demonstrated statements (i), (ii) and (iii) can be analytically expressed by the conditions:
O'()(X) < 0
O'()(X) . £f0(X) =0 (25)
oo(x) coaxial gn(x) Vx € Q

From the stationarity condition of the Lagrangian functional given in Eq. (11) with respect to variations
du(x), one gets

SLu(wo, &0, A1, 42) :/0'0

Q

(x) - [Vou(x) — &r(x)]dV — / p(x) - du(x)d4 =0 Vou(x) (26)

which, remembering that go(X) - &n(x) = 0 Vx € Q, as already found in above, is simply the variational con-
dition for equilibrium of the stress field in solution (the Principle of Virtual Work).

3.2. Minimum total complementary energy approach

Let r(x) = 6(x)a,,(X) be the reactive surface traction on the constrained surface 4; and ux) the imposed
displacements. On the stress field o(x), let define

U(a):% /Q 6(x) - Da(x)dV — /A r(x) - uy(x)d4 (27)

as the Complementary Energy functional, with D the compliance tensor.
It is proved that the functional in Eq. (27) is minimum in solution, i.e. when the field a((x) is a admissible
system (that means a fracture positive semi-definite strain field exists such that after addition to the elastic
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strains a compatible strain field is produced), over all the fields that are negative semi-definite and satisfy
the equilibrium. In other words

0
0 Vx € 2
4 Dive(x) = F(x)
o(xX)a,(x) =p(x) Vx€ed,
I1(x) and I,(x) being the linear and quadratic invariants of the stress field.
It is proved that the solution to the problem Eq. (28) necessarily yields a positive semi-definite inelastic

field g (x) = Vu(x) — Dao(X), coaxial and orthogonal to the stress field.
Let in fact form the Lagrangian functional from the problem Eq. (28)

(ol t, 1, 2) = U(a) + / 2(x) - [Dive(x) — F(x)]d + / u(x) - [p(x) — o(x)a,(x)] dd

—&-/Qa)l(x)ll(x)dV—/sz(x)lz(x)dV (29)

with A(x) and p(x) a couple of 3-dimensional vector functions of Lagrange multipliers, and w(x), wx(Xx) a
couple of scalar functions.

By the Kuhn-Tucker optimality conditions, A(x) and u(x) and a couple of non negative functions w;(x)
and wy(x) exist such that first-order variations, starting from the solution point ao(x) of the Lagrangian
functional with respect to free variations of the variable ¢(x), are identically zero. Moreover the comple-
mentarity condition yields: w(x)/1(x) = wy(x)Ix(x) =0 Vx € Q.

The stationarity condition of the Lagrangian with respect to variations 66 yields

dL, (0|2, 1y w1, @) = /QDO'()(X) -da(x)dV —/ [06(X)a, (x)] - ug(x)dA4 —/A [O6(x)a, (x)] - u(x)d4

—‘y-‘/)y(x)'[DiVSO’(X)}dV—‘r/wl(X)Sll(X)dV
—/wz(x)SIZ(x)dV:O Ve (x) (30)

whence, remembering that A(x) - [Divde(x)] = div[da(x)A(x)] — da(X) - Grad A(x) and applying the Gauss’s
theorem one obtains for the fourth integral in Eq. (30)

/Q () - [Divda(x)]dV = /Q div[de(x)A(x)]dV — /Q 56(x) - Grad /(x)dV

= /[SG(X)A(X)] ca,(x)d4 — /QSG(X) -Grad A(x)dV (31)

A

with 4 = Ap U Ad.
Introducing this result in Eq. (30) one gets

SL,(a0|A, pt, 01, m,) = /QSO'(X) - [Doy(x) — Grad A(x)]dV —/ [86(X)a, (x)] - ug(x)d4

Aq

—/ [86(x)a, (x)] - u(x)d4 + /[SG(X);L(X)] coy(x)dA + | o (x)3(x)dV

Ap 4 Q

_ / o (X)(x)dV =0 Voa(x) (32)
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The variational Eq. (32) can be solved by identifying the vector field A(x) in the displacement field ug(x) of
the solid in solution. This implies that A(x) coincides with imposed displacements uy(x) on A4, and that
Grad A(x) = gy(x), the strain field in solution. The vector field p(x), in turn, is assumed to coincide with
the free displacements on 4, in such a way that

Gradi(x) = g(x); A(X) =u,(x) in Q; A(Xx) =wuy(x) on 4y

#(x) = uy(x) = A(x) on 4y (33)
As a consequence Dao(x) — Grad A(x) = —ep(x) and after recognizing that
/ I8 (0] ) + | o] - ux)dt = [ (pox)a0)] -2, (x) dd (34)
Eq. (32) yields p
8Ly (6|4, 1, 1, @) / 86(X) - #r0(X / o (x)3, (x)dV — /chz(x)élz(x)dV —0 Voo(x)
(35)

Remembering that
311 (x) = 80y (x) + 80, (x)
015(X) = 00x(X) 80, (X) + 00, (X)30,(X) — 2704 (X) 57, (X) (36)

and developing the scalar product in the first integral in Eq. (35)
/{ —&r0:(X) + 01(X) — 2(x)a0y(x)]80, } dV + /{ —&r0y(X) + 01(X) — 2(x)00:]d0,(x) } AV
+ / ([ Tr0my (%) + 20 (x) 70, (X537, ()} ¥ = 0 V(33,80 5,) (37)
Q

which implies
& (X) = 01(X) — w2(X)00,(X)
er0y(X) = 01(X) — 02(X) 0 (X) (38)
{ T (X) = 202(X) 705, (X)
The fracture-strain invariants are easily calculated
Jir(X) = €rox(X) + &r0p = 201 (X) — w2 (x)11(x) = 0

Ja(x) = a0 ()~ [ 37| = 0306) = 01 R 3) + 030)1) > 0 (39)

whence one can conclude that
(i) “The fracture-strain tensor in every element is positive semi-definite in solution”.Consider now the
fracture work
Le(x) = 60 - &0 = 00.(X)&r0:(X) + G0, (X) 0y (X) + Toxy (X) 7p0r, (X)
= [1 (%) — @2(x) a0, (%)] 0. (%) + 01 (%) — @2(x) 70, (%)] 70, (%) + 2022(X) [0 (x)] (40)
whence, after some algebra
Le(x) = o1 (x)11(x) = 202 (x)12(x) = 0 (41)

and one can conclude that
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(i1) “The fracture work in every element is null in solution”.Let us now consider the orientation of the
fracture-strain tensor in solution. Since Eq. (38) are quite analogous to Eq. (15) it is easy to follow
a rationale similar to Egs. (19)—(24) to conclude that:

(iii) “The fracture-strain tensor in every element is coaxial to the stress tensor in solution”.

The above demonstrated statements (i), (i1) and (iii) can be analytically expressed by the conditions:
SfQ(X) = 0
Go(X) . Sfo(X) =0 (42)

6o(x) coaxial &o(x) Vxe€Q

4. An application: The NRT elastic semi-plane
4.1. The NRT elastic semi-plane

The above presented theory can be applied for analysing the stress distribution in a NRT elastic semi-
space under the action of a distributed load; this condition may be intended to reproduce the stress situa-
tion induced in the soil by a foundation structure, since the soil behaviour is characterized by a very low
resistance to tensile stresses.

In the following, the Complementary Energy approach is adopted for an approximate solution, since, as
above mentioned, the existence and uniqueness of the stress solution for a NRT material are always ensured
if the loads obey compatibility conditions.

Let, then, consider the case of the indefinite semi-plane shown in Fig. 3, subject to in-plane volume and
superficial loads acting in the two directions x and y; the semi-plane stress field obeys indefinite and bound-
ary equilibrium conditions, and admissibility conditions, which depend on the material characterization.
The semi-plane is described by y < 0.

Since one can assume an arbitrary expression for the surface loads, one follows a distributional approach:
a-type load distributions are adopted, whose sequence converges to the Dirac distribution.

afk(y) x]

Uk, 1k,

v

Fig. 3. The NRT elastic semi-plane with the load pattern.
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Therefore, with reference to Fig. 3, one assumes on the semi-plane limit line y = 0 a vertical distributed
load ¢(x)

> 1/k(y) b
N p/_le rdy = 1 (43)

where R is the load resultant (R < 0) and a[k(y), x] is a continuous function, indefinitely derivable and such
that supp{ofk(y), x]} = [—1/k(y), 1/k(y)].

By varying the function k(y) and, therefore, the support of the distributed surface load ¢(x), one can
build up a class of functions a[k(y), x], whose limit for k(y) — oo coincides with the impulsive Dirac’s func-
tion d. From Fig. 3 one can observe that, for y <0, the relation between the curve z(y) modelling the pro-
cess of stress diffusion in the semi-plane and k(y) is z(y) = 1/k(y).

The stress field described in the NRT elastic semi-plane is described by the components 6,(x,y), ,(x,y)
and 7,,(x,y), which should obey static equilibrium and admissibility conditions.

In the specific case, one considers only the self-weight forces related to the specific weight for volume unit
y and the distributed load ¢(x) given in Eq. (43).

Therefore equilibrium conditions can be written as follows:

0 x|
|

q(x) = Ra[k(0),] with afk(y),x] = {k(y)peW b

aax(x7y) + afxy(x7y)

—0
Ox oy
(44)
afxyé;,y) n aayéjy) =0
Tyy(x,0) =0
{< 0) = g(x) = Ralk(0),] (45)

Moreover, the symmetry of the treated problem is accounted for by introducing the relation
7(0,y) =0 (46)

By means of the symmetry with respect to the y-axis and marking by H(-) the Heaviside function, the gen-
eral expression of the g,(x,y) stress component in the semi-plane can be written in the form

o,(x,y) = H[l — k(y)x]Rk(y)pe 1401 + 3y (47)
Because of the properties characterizing the Dirac’s distribution, the following relations hold:
H'(1) = 8(1),  f(1)8(t) = £(0)5(r) (48)

the stress field obeying the equilibrium conditions in the NRT elastic semi-plane is expressed by Eq. (47)
and the relations that can be consequently derived (after integration) by means of Eqs. (44) and (45), i.e.

T () = — H[1 — k(2X]RK () pre T + 74(y) (49)
0.(x,y) =Rp ["—@) D) ] {HK()x — 11(1) + H[1 — kG Hk()]}
k(y)"  k(y)
Y . k(y)x |
+ H[1 — k(y)x]Rp kk((J;/)) xle ko 4 ao(y),  Mk(y)x] = /0 we 12 dw (50)

with the symbols (-)’ and (-)” indicating first and second order derivatives, and to(y) and oo(y) denoting
unknown functions of y coming out from integration.
In detalils, 1o(y) and go(y) represent the stress distribution at x = 0; from Eq. (46) one gets

70(0,y) =10(y) =0 Wy (51)
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while the function go(y) is assumed to be composed by two terms according to the relation

6,(0.5) = 00(y) = () + G1(3) = viy — Rp lfg)_ zlféy)i ]H(l) (52)

with v the Poisson’s coefficient.

From Egs. (47), (49) and (50), expressing the equilibrated stress components, one can observe that no
discontinuity in the stress field can be detected in correspondence of the curve z(y). One can, thus, build
up equilibrated stress fields by specifying the function k(y). The internal equilibrium is ensured by the
continuity and double derivability of such function, while the boundary equilibrium Eq. (45), determines
an initial condition on the k(y) first derivative, that is k'(0) =

Since for y — —oo, k(y) — 0, that is to say that it is expected that the influence of the local load decreases
and the solution almost depends on the only vertical volume forces, one assumes an expression of the k()
function of the type

k(y) = ko()’)ffﬁy2 = <i kiyi> e (53)

where [ is a positive constant to be determined and k(y) is a function of y to be given in such a manner that
the initial value of k(y) coincides with the one of k¢(y), i.e. ko(0) = k(0) = ko, which represents the load trace
on the boundary surface y = 0. Finally k;, for i=1 ... n, denote n unknown coefficients.

The expression of k(y) in Eq. (53) is obviously continuous, characterized by continuous derivatives (C
class), and satisfies £'(0) = 0, provided that k| = 0 if it is the case.

Dealing with an NRT elastic plane, the stress field characterizing the problem solution should comply
also with material admissibility conditions.

Therefore, the stress components obtained by imposing equilibrium conditions, should also satisfy the
conditions

0:(x,) <0, 0,(x,y) <0, 0.(x,9)0,(x,y) > 1, (x,) (54)

which ensure pure compression on any other surface element in any point of the semi-plane.

As above stated, by the complementary energy approach the solution stress field oy should comply with
equilibrium and admissibility conditions. In details, one should search for the problem solution in the class
of equilibrated solutions, which are defined by stress fields expressed by Egs. (47), (49) and (50) and the
related Eqgs. (51) and (52); at the same time, the solution should satisfy the inequalities in Eq. (54).

Therefore the problem can be set as follows:

o.(x,») <0
Ulou(x,)] = min Ufo(x,)] = min Ulz()] sub o,(x,) < 0 V(x,)) (55)
o) 20) ,
o:(x,y)o,(x,y) = 73,(x,»)
with Ula(x,y)] = Ulz(y)] =1 [ [a(x,) - &(x,y) dxdy and o(x,y), 6,(x,p) and 1,,(x,y) given by Egs. (47),

(49) and (50).
In the following some results are reported, obtained by applying the shown approach to the considered
case.

4.2. Numerical results
For the NRT semi-plane depicted in Fig. 3, one considers the specific weight y = 2000 kg/m? and the

load resultant R = —1000 kg. For characterizing the function k(y), one assumes a number of coefficients
k; in Eq. (53) equal to n =3 and an initial value ky = ky(0) =
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The condition £’(0) = 0 (i.e. k; constrained to be null) is released, in order to allow some shear stress to
develop by friction at the interface between the semi-plane and the foundation block that is assumed to
transmit the load. Such shear stress is, therefore, identified in solution at the Complementary Energy mini-
mum as a reactive surface force.

The optimal solution is then searched for by looking at the coefficients k;, for i =0,1,2,3, and f such to
solve the problem Eq. (55).

As above mentioned the first coefficient k, represents the load trace and is, thus, fixed.

The numerical implementation of the complementary energy problem Eq. (55), gives optimal values
ki =0.1957, ky = 0.0067, k3 = 0.00008 and 5 = 0.0004.

One can, thus, build up the optimal expression of the function k(y) by Eq. (53) and determine the
approximated stress diffusion by means of Egs. (47), (49) and (50).

The calculated stress distribution is shown in Figs. 4 and 5 along some horizontal and vertical fundamen-
tal lines.

P GRS , v [0
[ O Jos= - 71007 -10

[ Ophin= - 4.0556 10°

(b)

Fig. 4. The stress components along some horizontal and vertical fundamental lines: (a) oy; (b) o,.

& [Ty =+ 4.4432 - 102
[Ty houin = - 44432 -10

Xy

-5.0 -2.5 0 22 5.0

z(y)

-10.0

/

Fig. 5. The stress component 7., along some horizontal and vertical fundamental lines.

-25.0
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5. Conclusions

In the paper, one approaches theoretical and numerical features of problems relevant to continua that
can be modelled by Not Resisting Tension (NRT) models. Actually the NRT material is a phenomenolo-
gical model able to effectively interpret the behaviour of mechanical bodies made by not-cohesive materials,
such as masonries and soils.

After introducing the basic elements of the NRT theory, one gives an analytical demonstration of the
main relations governing the NRT behaviour, basically starting from the imposition of Kuhn-Tucker’s
stationarity conditions for constrained optimisation procedures for NRT continua.

Finally the problem of stress diffusion in an elastic-NRT semi-plane is approached. An equilibrated
stress fields subspace is built up, in order to search for an approximate solution of the problem. The numeri-
cal results exhibit some features analogous to the experimental stress diffusion in subsoil carrying vertical
loads on the free surface.
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